LTL_f Synthesis Under Environment Specifications

Antonio Di Stasio

Sapienza University of Rome, Italy

VardiFest - FloC 2022

Reactive Synthesis

Given a specification φ over inputs ${\mathcal I}$ and outputs ${\mathcal O},$ expressed in:

```
LTL (Pnueli 1977) or LTL<sub>f</sub> (De Giacomo, Vardi 2013)

Syntax:

\varphi ::= a | \varphi \land \varphi | \neg \varphi | \bigcirc \varphi | \varphi \mathcal{U} \varphi | \Diamond \varphi | \Box \varphi

Semantic:

A trace trace is an infinite (LTL) or finite (LTL) sequence over \mathcal{T} and \mathcal{O}. We write trace
```

A trace *trace* is an infinite (LTL) or finite (LTL_f) sequence over \mathcal{I} and \mathcal{O} . We write $trace \models \varphi$ to mean that τ satisfies φ .

Reactive Synthesis

Agent and Environment Strategies, and Traces

For an agent strategy $\sigma_{ag}: \mathcal{I}^+ \to \mathcal{O}$ and an environment strategy $\sigma_{env}: \mathcal{O}^* \to \mathcal{I}$, the trace $trace(\sigma_{ag}, \sigma_{env}) = (i_1 \cup o_1), (i_2 \cup o_2) \ldots \in 2^{\mathcal{I} \cup \mathcal{O}}$ denotes the unique trace induced by both σ_{ag} and σ_{env} .

Synthesis Problem

Given an LTL/ LTL_f task Goal for the agent Find agent strategy σ_{ag} such that $\forall \sigma_{env}.trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Planning (or Synthesis with a model of the world)

Domain

- Planning consider the agent acting in a (nondeterministic) domain
- The domain is a model of how the world (i.e. the environment) works
- That is, it is a specification of the possible environment strategies

 $[[Dom]] = \{\sigma_{env} | \sigma_{env} \text{ compliant with } Dom\}$

Planning in nondeterministic domains

Given an task Goal for the agent, and a domain Dom modeling the environment

Find agent behavior σ_{ag} such that $\forall \sigma_{env} \in [[Dom]].trace(\sigma_{ag}\sigma_{env}) \models Goal$

Environment Specifications

Which kinds of environment assumptions can the agent make?

- Nondeterministic planning domains;
- Forms of fairness (□◊φ) and stability (◊□φ)[ZhuDeGiacomoPuVardiAAAI2020];
- Safety properties [DeGiacomoDiStasioPerelliZhuKR2021];
- GR(1) formulas [DeGiacomoDiStasioTabajaraVardiZhulJCAl2021];
- ..

Environments Specifications as LTL formulas

A natural generalization is to consider general environment specifications expressed as arbitrary LTL formulas [DeGiacomoDiStasioVardiZhuKR2020].

Synthesis Under Environment Specifications

Environment Specifications

Let Env be an LTL/LTL_f formula over $\mathcal{I} \cup \mathcal{O}$. $[[Env]] = \{\sigma_{env} | \sigma_{env} \text{ satisfies } Env \text{ whatever is the agent strategy} \}$

Synthesis under environment specifications in LTL/LTL_f

Given an LTL_f task Goal for the agent, and an LTL/LTL_f environment specification Env: Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]]$.trace($\sigma_{ag}, \sigma_{env}) \models Goal$

Theorem [Aminof et al. ICAPS 2019]

To find agent strategy realizing Goal under the environment specification Env, we can use standard synthesis for

$$Env \rightarrow Goal$$

LTL_f Synthesis Under LTL Environment Specifications

Problem

Solve the synthesis problem for

$$\varphi^e_{LTL} \wedge \varphi^e_{LTL_f} \to \varphi^a_{task}$$

separating the LTL_f environment specifications:

$$(\varphi^e_{LTL} \land \varphi^e_{LTL_f} \to \varphi^a_{task}) \iff (\varphi^e_{LTL} \to \varphi^e_{LTL_f} \to \varphi^a_{task}) \iff (\varphi^e_{LTL} \to \neg \varphi^e_{LTL_f} \lor \varphi^a_{task})$$

where $\varphi'_{LTL_f} = \neg \varphi^e_{LTL_f} \lor \varphi^a_{task}$ is expressed in LTL_f and φ^e_{LTL} in LTL.

Key Idea:

- Agent goal: $\neg \varphi^e_{LTL} \lor \varphi'_{LTL_f}$ Environment goal: $\varphi^e_{LTL} \land \neg \varphi'_{LTL_f}$;
- (a) Build the DFA of φ'_{LTL_f} , solve the reachbility game for the agent over it;
- **③** Remove the agent winning area and do the product with the DPA of φ^e_{LTL} ;
- Solve the parity games for the environment over it;
- **(**) Combine the two agent winning strategies computed in 2 and 4.

LTL_f Synthesis Under GR(1) Environment Specifications

Problem

Solve the synthesis problem for

$$\varphi^e_{GR(1)} \to \varphi^a_{task}$$

Key Idea:

- Agent goal: $\neg \varphi^e_{GR(1)} \lor \varphi^a_{task}$ Environment goal $\varphi^e_{GR(1)} \land \neg \varphi^a_{task}$
- Build the corresponding DFA $\mathcal{A}_{\varphi^a_{task}}$ of φ^a_{task} , and take its complement $\overline{\mathcal{A}_{\varphi^a_{task}}}$
- Define a $_{\rm GR}(1)$ game whose game arena is $\overline{\mathcal{A}}_{\varphi^a_{task}}$ and winning condition $\varphi^e_{GR(1)}$
- $\bullet\,$ Solve the ${}_{\rm GR}(1)$ game for the agent, i.e., solve the dual of the ${}_{\rm GR}(1)$ game.

LTL_f Synthesis Under Safety Environment Specifications

Problem

Solve the synthesis problem for

$$\varphi^e_{\mathcal{S}} \to \varphi^a_{task}$$

Key Idea:

- Compute the deterministic safety automaton \mathcal{D} of $\varphi_{\mathcal{S}}$ (no Büchi determinization!)
- Solve the safety game for the environment over \mathcal{D} ;
- Construct the maximally permissive strategy T;
- Build the corresponding DFA $\mathcal{A}_{\varphi^a_{task}}$ of φ^a_{task} ;
- Do the product of \mathcal{T} and $\mathcal{A}_{\varphi^a_{task}}$;
- Solve the reachability game for the agent over it, and return a strategy, if exists.

LTL_f Synthesis Under Safety Environment Specifications

Problem

Solve the synthesis problem for

$$\varphi^e_{\mathcal{S}} \to \varphi^a_{task}$$

Key Idea:

- Compute the deterministic safety automaton \mathcal{D} of $\varphi_{\mathcal{S}}$ (no Büchi determinization!)
- Solve the safety game for the environment over \mathcal{D} ;
- Construct the maximally permissive strategy \mathcal{T} ;
- Build the corresponding DFA $\mathcal{A}_{\varphi^a_{task}}$ of $\varphi^a_{task};$
- Do the product of \mathcal{T} and $\mathcal{A}_{\varphi^a_{task}}$;
- Solve the reachability game for the agent over it, and return a strategy, if exists.

No reduction to the implication!

Future Works

Almost all the techniques are based on the following reduction

Theorem [Aminof et al. ICAPS 2019]

To find agent strategy realizing Goal under the environment specification Env, we can use standard synthesis for

 $Env \to Goal$

Possible directions

- In case of safety environment specifications we can directly solve the problem without reduction to the implication.
- \bullet What about the other environment specifications? Fairness, ${}_{\rm GR}(1),$ LTL, \ldots

Future Works

Almost all the techniques are based on the following reduction

Theorem [Aminof et al. ICAPS 2019]

To find agent strategy realizing Goal under the environment specification Env, we can use standard synthesis for

 $Env \to Goal$

Possible directions

- In case of safety environment specifications we can directly solve the problem without reduction to the implication.
- What about the other environment specifications? Fairness, ${
 m GR}(1)$, LTL, ...

Moshe's quote: "We need to focus on the problems in P, where P does not mean Polynomial Time but **Practical Problems!**"

